
Case Study
Software

Figure 1. Illegal image filter system architecture

Optimizing an Illegal Image Filter System

Tencent Doubles the Speed of its Illegal Image Filter System using SIMD
Instruction Set and Intel® Integrated Performance Primitives

For a large Internet service provider like China’s Tencent, being able to detect ille-
gal images is important. Popular apps like WeChat*, QQ*, and QQ Album* are not
just text oriented, but also image generation and sharing apps. Every year, the vol-
ume of newly generated images reach about 100 petabytes―even after image
compression. Some users may try to upload illegal images (e.g., porn). They cer-
tainly don’t tell the system that the image is illegal, so the system runs a check on
each image to try to block them. This is a huge computing workload, with billions
of images uploaded each day.

Technical Background

When a user uploads an image, the filter system decodes the image for prepro-
cessing. The preprocessing uses a Filter2D function to smooth and resize an
image of any size to one fixed size. This intermediate image is the input for finger-
print creation. The new fingerprint is compared to the seed fingerprint of an illegal
image. If the image is illegal, it is blocked or deleted and the fingerprint is added
into the illegal image fingerprint repository.

Figure 1 shows how a fingerprint seed is added to the repository manually.

Intel® Integrated Performance Primitives

High-Performance Computing

Figure 2. Illegal image filter system hotspot functions

and how the application can benefit from
available hardware resources.

Using Intel VTune Amplifier to profile
Tencent’s illegal image filter system, the
team was able to locate the hotspot func-
tions. Figure 2 shows that GetRegionID,
GetFingerGrayGegionHistogram and
cv::Filter2D are the top three hotspot
functions.

The team found that GetRegionID was
called by GenFingerGrayRegionHistogram.
The GetRegionID function included a cas-
caded clause (if else), which is hard to opti-
mize. The GetFingerGrayGegionHistogram
function can be reimplemented using
SIMD instructions. And the filter2D func-
tion can be reimplemented by Intel® Inte-
grated Performance Primitives (Intel® IPP).
Both these functions achieved more than a
10x speed-up. The whole system has
more than doubled its speed, which
helped Tencent double the performance
of its system. Moreover, the latency reduc-
tion improves the usage experience when
users share images and send them to
friends. Since Filter2D is also widely used
in data processing and digital image pro-
cessing, Intel’s work with Tencent is a good
example for other cloud service users.

Intel® Streaming SIMD Extensions
and GetFingerGrayGegionHistogram
Optimization
Intel introduced an instruction set exten-
sion with the Intel® Pentium® III processor
called Intel® Streaming SIMD Extensions
(Intel® SSE). This was a major extension
that added floating-point operations
over the earlier, integer-only SIMD in-
struction set called MMX™, which was in-
troduced with the Intel Pentium
processor. Since the original Intel SSE,
SIMD instruction sets have been ex-
tended by wider vectors, new and exten-
sible syntax, and rich functionality. The
latest SIMD instruction, set Intel® Ad-
vanced Vector Extensions (Intel®
AVX512), can be found in the Intel® Core™
i7 processor.

Figure 3. Before and after optimization

Optimizing an Illegal  Image Filter System 2

Optimization Overview
Working with Tencent engineers, Intel
prepared the environment to tune the
hotspot functions. Intel® VTune™ Ampli-
fier is a powerful tool that can provide

runtime information on code perform-
ance for developers creating serial and
multithreaded applications. With this pro-
filer information, a developer can analyze
the algorithm choices and identify where

Tencent More than Doubles the Speed and Performance of Filtering

developers with ready-to-use, proces-
sor-optimized functions to accelerate
image, signal, data processing, and cryp-
tography computation tasks. It supplies
rich functions for image processing, in-
cluding an image filter, which was highly
optimized using SIMD instructions.

Optimizing Filters 2D
Filtering is a common image processing
operation for edge detection, blurring,
noise removal, and feature detection.
General linear filters use a general rec-
tangular kernel to filter an image. The
kernel is a matrix of signed integers or
single-precision real values. For each
input pixel, the kernel is placed on the
image in such a way that the fixed an-
chor cell (usually be geometric center)
within the kernel coincides with the
input pixel. Then it computes the accu-
mulation of the kernel and the corre-
sponding pixel. Intel IPP supports the
variant filter operation (Table 2).

For several border types (e.g., constant
border, replicated border), Tencent used
OpenCV* 2.4.10 to preprocess images.
Using Intel VTune Amplifier XE, the team
found that the No. 3 hotspot is cv::Fil-
ter2D. It was convenient and easy to use
the Intel IPP filter function to replace the
OpenCV function.

The test file filter2D_demo.cpp is from
OpenCV Version: 3.1:

• @brief Sample code that shows
how to implement your own linear
filters by using filter2D function

• @author OpenCV team

The team used the IPP filter function
from Intel IPP 9.0, update 1, as shown in
Figure 4.

Accelerating the Filter2D by Intel IPP
The team used the same filter kernel to
filter the original image, and then recom-
piled the test code and OpenCV code
with GCC and benchmarked the result on
Intel Xeon processor-based systems. The
effects of the image filter are the same
from Intel IPP code and OpenCV code.

Algorithms that significantly benefit
from SIMD instructions include a wide
range of applications such as image and
audio/video processing, data transfor-
mation and compression, financial ana-
lytics, and 3D modeling and analysis.

The hardware that runs Tencent’s illegal
image filter system uses a mix of proces-
sors. Intel’s optimization is based the
common SSE2, which is supported by all
the Tencent systems.

The team investigated the top two func-
tions: GetRegionID and GetFingerGray-
GegionHistogram. GetRegionID was
called by GenFingerGrayRegionHis-
togram. The GetRegionID function in-
cludes a cascaded clause of “if else,”
which is hard to optimize. But the func-
tion GetFingerGrayGegionHistogram has
a big “for” loop for each image pixel,
which has room for optimization. And
there is a special algorithm logical when
GetFingerGrayGegionHistogram calls
GetRegionID. Intel rewrote part of the

code to use the SIMD instruction to opti-
mize the GetFingerGrayGegionHis-
togram function. Figure 3 shows
Simhash.cpp, which is the source file be-
fore optimization, and simhash11.cpp,
the file after optimization.

Intel tested the optimized code on an
Intel® Xeon® processor E5-2680 0 at
2.70GHz. The input image was a large
JPEG image (5,000 by 4,000 pixels). Ten-
cent calls the function by single thread,
so the team tested it on single core. The
result was a significant speedup (Table 1).

Intel® IPP and Filters 2D Optimization
Intel SIMD capabilities change over time,
with wider vectors, newer and more ex-
tensible syntax, and rich functionality. To
reduce the effort needed on instruction-
level optimization to support every
processor release, Intel offers a store-
house of optimized code for all kinds of
special computation tasks. The Intel IPP
library is one of them. Intel IPP provides

Table 1. Traits and behaviors of mutexes

Algorithm
Name

Tencent’s
original

SSE4.2
optimized

Latency (Seconds)
(Smaller is Better)

0.457409

0.016346

Gain

100%

2,798%

Table 2. Variant filter operation

IPP Filter Functionality

ppiFilter<Bilateral|Box|SumWin-
dow>Border

ippiMedian Filter

ippiGeneral Linear Filters

Separable Filters

Wiener Filters

Fixed Filters

Convolution

Notes

Perform bilateral, box filter, sum pixel in
window

Median filter

A user-specified filter

FilterColumn or FilterRow function

Wiener filter

Gaussian, laplace, hipass and lowpass fil-
ter, Prewitt, Roberts and Scharr filter etc.

Image convolution

Optimizing an Illegal  Image Filter System 3

Optimizing an Illegal  Image Filter System
4

Figure 5 shows the Intel IPP smooth
image (right) compared to original
image.

The consumption times (Table 3) show
that the ipp_filter2D take less time
(about 9ms), while the OpenCV source
code takes about 143ms. The IPP fil-
ter2D is 15x faster than the OpenCV
plain code.

Note that OpenCV has Intel IPP inte-
grated during compilation; thus, some
functions can call Intel IPP functions un-
derlying automatically. In some of
OpenCV versions, the Filter2d function
can at least call the IPP Filter2D. But,
considering the overhead of function
calls, the team selected to call the IPP
function directly.

Summary
With manual modifications to the algo-
rithm, plus SSE instruction optimization
and Intel IPP filter replacement, Tencent
reports that the performance of its ille-
gal image filter system has more than
doubled compared to the previous im-
plementation in its test machine. Figure
6 shows the total results (category 3).

Tencent is a leading Internet service
provider with high performance require-
ments for all kinds of computing tasks.
Detecting and filtering illegal images is a
typical example. Popular apps like
Wechat, QQ, and QQ Album generate
billions of images each day.

Intel helped Tencent optimize the top
three hotspot functions of its illegal
image filter system. By manually imple-
menting the fingerprint generation with
SIMD instructions, and replacing the fil-
ter2D function with a call into the Intel
IPP library, Tencent was able to speed
up both hotspots by more than 10x. As a
result, the entire illegal image filter sys-
tem has more than doubled its speed.
This will help Tencent double the capa-
bility of its systems. Moreover, the la-
tency reduction improves the user
experience for customers sharing and
sending images.

Figure 4. Code before (left) and after (right) using IPP

Figure 5. Image before (left) and after filtering

Table3. Consumption times

CPU

Intel® Xeon®
processor E5-

2680 v3

Program

ipp_filter2D

OpenCV_filter2D

Time (ms)

9

143

Optimizing an Illegal  Image Filter System 7

Figure 6. Total results

Learn More

Tencent >

Intel Integrated Performance
Primitives >

http://www.tencent.com/en-us/index.shtml
https://software.intel.com/en-us/intel-ipp

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.
 Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer, or learn more at www.intel.com.
 Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/perfor-
mance.

 Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites
or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

 This document and the information given are for the convenience of Intel’s customer base and are provided “AS IS” WITH NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY IM-
PLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. Receipt or possession of this document does not
grant any license to any of the intellectual property described, displayed, or contained herein. Intel® products are not intended for use in medical, lifesaving, life-sustaining, critical control, or safety sys-
tems, or in nuclear facility applications.

 Copyright © 2016 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
* Other names and brands may be claimed as the property of others. Printed in USA 0516/SS Please Recycle

