
Case Study
Software

Figure 1. Bowtie 2

Preparing for a Many-Core Future

Johns Hopkins University Increases the Performance of its Open-Source
Bowtie 2* Application by Adding Multi-Core Parallelism

Modern DNA sequencing provides an inexpensive and high-resolution window
into diverse aspects of biology, genetics, and disease. Like a microscope, a se-
quencer produces a snapshot of a collection of cells. Unlike a microscope, a se-
quencer does not provide a finished, ready-to-interpret image. Rather, it produces
billions of tiny snippets (reads) of DNA that must first be composed into longer,
interpretable units such as genes or chromosomes.

Bowtie* and Bowtie 2* are widely used software tools produced in the University’s
Langmead Lab that allow biologists to piece together the fragmentary evidence
generated by DNA sequencers. They do so with respect to a reference genome―a
strategy not unlike putting together a puzzle while peeking at the picture of the
completed puzzle on the box lid.

Bowtie 2 (Figure 1) is the preferred tool for contemporary datasets. It is particu-
larly good at aligning fragments of DNA (reads) of about 50 up to hundreds or
thousands of characters, and at aligning to long genomes like the human genome.
Bowtie 2 uses a concise text index called the FM (full text, minute space) Index* to
keep its memory footprint small. For the human genome, which consists of about
3 billion DNA bases, its memory footprint is typically around 3.2 GB. The align-
ment for one read does not depend on the alignment for any other read, so the
problem is broadly data parallel. For each read, the computational workload in

Intel® Threading Building Blocks

High-Performance Computing

http://www.langmead-lab.org/

Figure 2. Screenshot of Intel® Inspector identifying threading data race conditions in
Bowtie 2 that were fixed in Bowtie 2.0.3 release

The querying of the reference index was
optimized by using the population count
instruction (popcnt) available in the Intel
SSE 4.2 instruction set extension. Intel
TBB support was added to Bowtie 2
starting with version 2.2.6, which pro-
vides better performance in most situa-
tions. Intel TBB simplified experimenting
with additional locks to increase the
thread scaling of Bowtie 2.

Intel Inspector revealed a number of is-
sues that led to improvements in stabil-
ity and thread scalability for Bowtie 2.
Those improvements are in the Bowtie 2
software today, improving the experi-
ence for scientific users.

Performance Issues Encountered

Issue No. 1: Locking

Bowtie 2 threads repeatedly follow a
cycle:

1. Obtain the next read from the input
file.

2. Align it to the reference genome
using the genome index and
dynamic programming.

3. Print the resulting alignment(s) to
the output file, then repeat.

Step 2 is by far the most work-intensive.
Steps 1 and 3 require synchronization
among the threads to ensure input
records are consumed and output
records are written without corruption
due to data races.

While the input and output critical sec-
tions are quite short, the input critical
section was often implicated as the scal-
ability bottleneck, as described in more
detail below. When the team began the
project, this critical section would do es-
sentially two things:

1. Read the input file in a buffered
fashion using C I/O functions

2. Parse one additional record of input

Preparing for a Many-Core Future 2

Bowtie 2 is roughly evenly divided be-
tween index querying―to find align-
ments for short “seed” substrings
extracted from the read―and dynamic
programming―to extend the short seed
hits into longer gapped alignments. The
dynamic programming step has a great
deal of instruction-level parallelism and
its inner loops can be implemented with
SIMD instructions.

Adding Intel TBB to Bowtie 2
Before its collaboration with Intel, Bowtie
2 had been using a small library called
tinythreads for synchronization.
Tinythreads supported simple mutual ex-
clusion using a combination of spinlocks
and pthreads. But despite the problem
being “embarrassingly” parallel, initial
benchmarking on non-uniform memory
access (NUMA) Intel® Xeon® processor-
based systems revealed that Bowtie 2
scaled very poorly to large numbers of
threads. For example, per-thread through-
put decreased by a factor of about six
when moving from a single thread to 120
threads on an Intel® Core™ i7 processor-
based system with four NUMA nodes and
60 physical cores (120 with Intel® Hyper-
Threading Technology). The team there-

fore decided to investigate whether Intel’s
tools―including Intel® VTune™ Amplifier,
Intel TBB, and Intel® Inspector―could help
to improve Bowtie 2’s performance and
reliability on many-core systems.

Intel Collaboration on Bowtie 2
Intel engineers have been collaborating
with Professor Ben Langmead’s team to
improve Bowtie 2 code quality and per-
formance. Intel Inspector is a dynamic
memory and threading error checking
tool that identified several threading er-
rors, which were corrected in the Bowtie 2
release 2.0.3 released in 2012. Figure 2 is
a screen shot of Intel Inspector XE, show-
ing the thread data race issues that were
identified in Bowtie 2. Performance im-
provements to Bowtie 2 include:

• Optimizations to use hardware pop-
ulation count instructions

• Improvements to thread scalability

• The ability to use multiple threads
to take advantage of the increasing
number of processor cores available
on Intel® processors

Collaborating to Improve Performance and Reliability on Many-Core Systems

contention is low or can be spread out
among many spin_mutex objects.

The tbb::queuing_mutex also spins in
user space but, unlike spin_mutex, it
scales because waiting threads do not
access a single shared state. Instead,
each polls its own flag. This mutex is fair,
non-recursive, and, though not really
thread-aware, its scope-based API com-
plicates lock releasing in another thread.
It is recommended when scalability and
fairness are important. Note that fair-
ness can negatively impact performance
due to loss of cache locality for pro-
tected shared data.

The tbb::mutex (also called normal
mutex) is a wrapper around the OS-spe-
cific mutual exclusion primitives:

• CRITICAL_SECTION on the
Windows* OS

• pthread_mutex on Linux* OS and
OS X*

The most important difference in this
mutex is that a waiting thread does not
spend CPU cycles but is blocked by the
OS until it can take the lock. Because of
this, it typically has higher overhead
than spinning locks. It is recommended
for cases where waiting time is long or
unpredictable.

Input records are typically represented
in the FASTQ text format, where each
fragment of DNA (i.e., sequencing read)
is represented on a set of four consecu-
tive lines. An important fact about this
format is that the individual records do
not have a predictable length. Only by
parsing the record―at least minimally―
can we know exactly where the next
record boundary lies.

Also, some DNA sequencing datasets
consist of so-called “paired-end reads.”
For these datasets, the input consists of
two FASTQ files, where successive
records in the two files match up to
form pairs of DNA fragments. In this
case, synchronization is required both
to parse reads in a given FASTQ file and
to ensure that the reads in the two
FASTQ files are parsed concurrently as
expected.

Intel TBB supplies several different
types of mutexes, each with different
properties.

To understand some of the behavior the
team was seeing, it was important to
know these properties.

The Intel TBB documentation describes
the following qualities for mutexes:

• Scalability: Ability to keep the syn-
chronization overhead constant
with a growing number of contend-
ing threads

• Fairness: Ability to give threads
access to the critical section in the
order of arrival

• Recursiveness: Allowing a thread
that is holding a lock on a mutex to
acquire another lock on the same
mutex

• Waiting policy: Whether the thread
actively polls the mutex state while
waiting, or blocks until signaled that
the mutex is free

The team was also interested in the fol-
lowing properties:

• Thread awareness: Whether the
lock can only be freed by the same
thread that acquired it (thread-
aware), or by any thread (thread-
oblivious)

• Cohort detection: Ability for the
thread holding the lock to detect if
there are threads waiting on the
lock

Table 1 summarizes the properties for
Intel TBB mutexes used.

As follows from the name, tbb::spin_mutex
spins in user space while waiting. It is
non-scalable, unfair, non-recursive,
thread oblivious, and does not allow de-
tecting contending threads. It is very fast
for lightly contended, short, critical sec-
tions. This mutex is recommended when

Table 1. Traits and behaviors of mutexes

Mutex

spin_mutex

queuing_mutex

mutex

Scalable

No

Yes

OS

Dependent

Fair

No

Yes

OS

Dependent

Recursive

No

No

No

Waiting

Polls

Polls

Blocks

Thread-Aware

Oblivious

See below

OS Dependent

Cohort
Detection

No

Yes

No

Preparing for a Many-Core Future 3

Preparing for a Many-Core Future
4

The team experimented with different
mutex types to see if the choice of
mutex might improve performance. Fig-
ure 3 shows performance differences in
Bowtie 2 with the various mutexes.

As the figure shows, the worst perform-
ance was with the spin_mutex. This was
an unexpected result. Since the system
in this case supported up to 120
threads (60 physical cores, 120 with
Intel HyperThreading Technology), the
team expected a spin mutex to be more
beneficial to aggregate throughput
than, for example, a normal mutex. The
fact that the spin mutex was actually
the worst performing of the lock types
caused them to investigate the cache
coherence properties of the spin mutex
on NUMA architectures. The team ran
some performance tests using Intel
VTune Amplifier, which showed a
hotspot in the Intel TBB primitive for
spin lock acquisition. This supported
the theory that cache coherence due to
contended reads and writes to the
shared lock state was an issue.

Issue No. 2: NUMA Issues

In a processor that supports NUMA, it is
not enough to know that you missed a
cache on the CPU where you are run-
ning. In NUMA architectures, you could
also be referencing the cache and DRAM
on another socket. The latencies for this
type of access are an order of magni-
tude greater than for the local case. You
need the ability to identify and optimize
these remote memory accesses.

The Intel TBB queue mutex resulted in
better performance than the spin mutex.
However, when it was run on multi-
socket systems, the team noticed degra-
dation in performance. Figure 5 shows
the results of these experiments.

The type of locks used in Bowtie 2 are
shared among all the cores and among
the sockets. The memory the lock uses
is a potential performance bottleneck
due to cache coherence issues. The the-
ory was that the lock migration between
the NUMA nodes caused the observed

Figure 3. Performance differences in Bowtie 2 with different mutexes

Figure 4. Performance testing

performance difference. To check this,
the team needed a way for its locks to
be NUMA aware.

To analyze the performance and the
memory bandwidth and cache coher-
ence issues, tools such as Intel VTune
Amplifier have added some new analysis
types that make this much easier.

Intel VTune Amplifier has a new analysis
type called HPC Performance Characteri-
zation. Using it, you can quickly see your
CPU utilization. If your application is
memory bound, the Memory Bound met-
ric will be highlighted in pink (Figure 6).

Intel VTune Amplifier also includes a
much deeper type of memory analysis.
Using the Memory Access analysis type,
you can see the DRAM bandwidth and
also the inter-socket bandwidth known
as Intel® QuickPath Interconnect (Intel®
QPI) bandwidth. Figure 7 shows the re-
sult of a Memory Access analysis collec-
tion. The summary view clearly shows
we are memory bound.

In the summary view (Figure 8) you can
also see a histogram of DRAM band-
width as well as QPI bandwidth.

Preparing for a Many-Core Future 5

In a nutshell, the cohort lock consists of
a set of cohort-detecting locks, each ac-
quired by threads running on the same
NUMA node, and a top-level, thread-
oblivious lock which transfers ownership
between NUMA nodes. In case of con-
tention, the lock ownership is typically
transferred to another thread on the
same node, which provides better
NUMA locality for both the lock state
and the data protected by the lock.

While it does not yet have a cohort lock
class, Intel TBB provides suitable mutex
classes for building it. As we discussed
earlier, tbb::spin_mutex is thread-oblivi-
ous and can be used as the top-level
lock. The tbb::queuing_mutex can be
easily extended to provide cohort detec-
tion and used for the node-level locks.
The paper referenced above describes
the general implementation approach.

Below, we outline specific aspects of an
Intel TBB-based implementation for
readers interested in doing their own ex-
periments.

Since Intel TBB is NUMA-agnostic and
does not provide any API for querying or
managing thread placement, we de-
signed the lock so that users need to
specify the desired number of nodes
(cohorts) at lock construction and the
node/cohort index at lock acquisition.

Other than thread-obliviousness, there
are no special requirements for the top-
level lock, so the tbb::spin_mutex can be
used as-is.

Extending tbb::queuing_mutex to pro-
vide cohort detection can be done by
adding the following method to the
class tbb::queuing_mutex::scoped_lock:

bool
tbb::queuing_mutex::scoped_lock::is_alo
ne() {

return next==NULL;

}

The method returns true if the mutex is
uncontended and false if there is an-
other thread waiting for it.

Figure 5. Lock migration experiments

Figure 6. HPC performance characterization

Lock Cohorting: Implementing Locks
that are NUMA Aware
In its final experiments with locking, the
team used a technique known as lock
cohorting to create a NUMA-aware
mutex on top of Intel TBB (a technique
described in an excellent paper by Dice
et al called “Lock Cohorting: A General
Technique for Designing NUMA Locks”).

As the paper states, a NUMA-aware co-
hort lock can be implemented on top of

two NUMA-oblivious locks with the fol-
lowing properties:

1. A thread-oblivious lock that “allows
the acquiring thread to differ from
the releasing thread”

2. A cohort-detecting lock for which “a
thread releasing the lock can detect
if it has a nonempty cohort of
threads concurrently attempting to
acquire the lock”

http://delivery.acm.org/10.1145/2150000/2145848/p247-dice.pdf?ip=192.55.54.45&id=2145848&acc=ACTIVE%20SERVICE&key=AC116DD66AAF555C%2EAC116DD66AAF555C%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=609719934&CFTOKEN=20637257&__acm__=1462200149_fb47f621bf93f6819da00a2e45744989

Preparing for a Many-Core Future 6

Figure 7. Memory access analysis

Figure 8. Summary analysis view

cohort lock should limit the number of
node-local acquisitions and decide when
to pass ownership to another cohort. The
limit can be hard-coded or provided as
an argument at lock construction. Each
node-level lock needs, besides a queu-
ing_mutex, a counter for the number of
local passes and a Boolean flag indicating
whether the next thread in the cohort can
proceed immediately or should first take
the global lock.

The preferred method for lock operations
in Intel TBB is to use a special scoped_lock
class. The scoped object for the cohort
lock should internally hold an instance of
tbb::queuing_mutex::scoped_lock or be
inherited from it, and also keep the co-
hort index necessary to release the lock.

Combining everything for a cohort lock
needs to contain an instance of
tbb::spin_mutex and an array of node-
level lock structures described above.
Since the number of cohorts is an argu-
ment to the constructor, the array
should be allocated from heap at the
lock creation. To avoid false sharing,
node-level locks should better be
padded. An easy way to add padding is
via tbb::internal::padded class template
defined in tbb_stddef.h:

using tbb::internal::padded;

padded<Node_Lock> * cohorts = new
padded<Node_Lock>[n_of_cohorts];

Since padded<Node_Lock> publicly in-
herits Node_Lock, all fields and methods
of the latter can be used without prob-
lems after padding.

Final Locking Results
As Table 2 shows, Queue and Cohort mu-
texes reduce cache coherent traffic be-
tween NUMA nodes by minimizing the
scope of the shared locking variable and
by not spinning on it. The fastest mutex is
still substantially slower than close to op-
timal performance (Cohort versus Node-
Bind). The length of the critical section
might explain most of this difference.Figure 9. Scalable FASTQ parsing

Preparing for a Many-Core Future 7

Run Type/
Lock Type

very_fast

fast

sensitive

very_sensitive

Spin Mutex

00:06:38.207

00:06:15.992

00:06:29.345

00:03:18.954

Normal (Heavy)
Mutex

00:03:31.638

00:03:32.426

00:03:36.371

00:03:39.274

Queue Mutex

00:02:46.012

00:02:44.905

00:02:47.158

00:03:19.625

Cohort Mutex1

00:02:29.866

00:02:29.504

00:02:31.084

00:03:15.617

Numa Node
Bind2

00:00:54.319

00:01:08.890

00:01:36.222

00:03:08.392

Table 2. Mutex comparison

1Not a TBB built-in mutex
2Threads are split up into four independent Bowtie processes with 30 threads eachl Each of the four Bowtie processes is run pinned to a
numa node with its own copy of the genome index pinned to its node’s memory.

Figure 10. Thread scaling: Bowtie 2 paired-end

in a substantial speedup of the applica-
tion. In its initial work, the team was able
to track down threading data races using
Intel Inspector. Once these correctness
issue were addressed, the team increased
the performance by using Intel TBB with
different mutexes that were better suited
to the application. The NUMA issues the
team experienced were handled by lock
cohorting and pinning threads to specific
cores. Finally, by splitting reads from pars-
ing in a critical section, the team saw es-
sentially ideal scaling up to 120 threads.

Overall, the team at Johns Hopkins―and
users of the Bowtie and Bowtie 2 soft-
ware tools―have benefitted greatly from
the collaboration with Intel. By working
directly with Intel engineers, and by
using Intel tools and libraries such as
Intel VTune Amplifier, Intel Inspector,
and Intel TBB, the team was able to ef-
fectively prepare these core genomics
software tools for the many-core future
around the corner.

Learn More

Genomics and Algorithms for DNA
Sequencing >

Johns Hopkins University >

Intel® Threading Building Blocks >

A final strategy the team has used to im-
prove thread scalability in Bowtie 2 is to
simplify the input critical section to in-
clude only the minimal amount of pars-
ing required to detect record boundaries.
The more work-intensive task of fully
parsing a FASTQ record is then deferred
to a routine that runs after the critical
section. We call this “light parsing.” The
team found that, in addition to the im-

provements obtained by moving to
queue locks and NUMA-aware locks,
there was a substantial additional im-
provement from switching to light pars-
ing, as shown in Figure 10.

Conclusion
Johns Hopkins and Intel have been col-
laborating on the Bowtie 2 application.
Adding parallelism via Intel TBB resulted

https://www.coursera.org/learn/dna-sequencing/
https://www.jhu.edu/
https://software.intel.com/en-us/intel-tbb

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.
 Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer, or learn more at www.intel.com.
 Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/perfor-
mance.

 Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites
or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

 This document and the information given are for the convenience of Intel’s customer base and are provided “AS IS” WITH NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY IM-
PLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. Receipt or possession of this document does not
grant any license to any of the intellectual property described, displayed, or contained herein. Intel® products are not intended for use in medical, lifesaving, life-sustaining, critical control, or safety sys-
tems, or in nuclear facility applications.

 Copyright © 2016 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
* Other names and brands may be claimed as the property of others. Printed in USA 0516/SS Please Recycle

