CASE STUDY inteD

Software

Optimizing Image Processing

Intel® C++ Compiler, Intel® Integrated Performance Primitives

High-Performance Computing

JD.com Speeds Image Processing 17x

As China's largest online direct sales company, JD.com handles several billion
product images every day. To do this, the company developed its own distributed
file system, JD File System* (JFS*). By using Intel® C++ Compiler and Intel® Integrated
Performance Primitives (Intel® IPP), JD.com sped up its image processing 17x—
handling 300,000 images in 162 seconds instead of 2,800 seconds.

Business Requirements

JD.com processes more online transactions than any other company in China,
with a market share of 54.3 percent in the second quarter of 2014, according to
iResearch, a third-party market research firm. The company's business has grown
rapidly, from offering approximately 1.5 million SKUs in 2011 to approximately
I 25.7 million in 2013. Today, JD.com must handle petabytes of data, which takes

w I,Tl‘ E an efficient, robust, distributed file system.
/{,71 COM Image System Overview

To handle its massive data, JD.com developed JFS*, a distributed cache system
and high-speed, key-value storage system that formed a solid foundation for its
fast-growing e-commerce business. As a distributed storage system designed for
excellent performance, reliability, and scalability, JFS provides three types of in-
terfaces: binary large object storage, file system storage, and block storage. JFS
supports many of JD.com's core services including a public/private cloud, an
image system, a logistics exchange platform, and instant messaging file sharing
storage. Figure 1 shows the overall architecture.

Product images might be the single most important aspect of an e-commerce
website like JD.com. Without the ability to touch, hold, smell, taste, or otherwise
handle the products they're interested in, potential customers have only images
to interact with. In JD.com, every product is displayed and described using high-,
medium-, and low-resolution images in diverse formats (e.g., JPG, GIF, and PNG).
Every day, billions of product images must be processed and stored in the JFS,
which requires great performance and capacity. To cut storage costs, JD.com usu-
ally compresses large images into smaller ones.

https://software.intel.com/en-us/intel-ipp/
https://software.intel.com/en-us/intel-ipp/

Optimizing Impage Processing

“Through close collaboration
with Intel engineers, we
adopted the Intel® C++
compiler and Intel® Integrated
Performance Primitives library
in our online image processing
application. The application
performance improved
significantly, and our cost of
operations reduced accordingly.
This is a typical case demonstrating
how technology creates value.”

—Liu Haifeng

Chief Architect of Cloud Platform and Director
of the System Technology Department
JD.com

Analyzing and Optimizing Performance to
Remove Bottlenecks and Cut Response Time

Online Serving (Massive Blobs,
Images, Cloud Storage,

Virtualized Block Store)

Hadoop*
Stack
Integration

RecordStore*

BlockStore*

RESTful* API Native Clients

Metadata

Figure 1. JFS architecture

A big challenge for the company is meet-
ing image processing requirements, such
as resizing, sharpening, color reducing,
or adding special effects to images. Orig-
inally, all image processing was achieved
using GraphicsMagick* (GM*) and the
GNU C Compiler* (GCC*), which con-
sumed a lot of CPU time and seriously
impacted JD.com's business resources.

Intel worked closely with JD.com engineers
to help them analyze the bottlenecks in
their image processing application and op-
timize them by using Intel® Integrated Per-
formance Primitives and Intel C++ Compiler
on the Intel® architecture platform.

Intel Tools Boost Image Processing

Intel C++ Compiler delivers strong per-
formance on compatible processors. It
provides extensive optimizations for the
latest Intel® processors including Intel®
Xeon® processors and Intel® Xeon Phi™
coprocessors. Its patented, automatic
CPU dispatch feature optimizes code for
the current running processor and runs
code optimized for specified processors
identified at application runtime. Intel
C++ Compiler also comes with broad

support for current and previous C and
C++ standards, plus popular extensions
including C++11, C99, and OpenMP* 4.0.

Intel® IPP is an extensive library of soft-
ware functions for media and data process-
ing. It provides thousands of frequently
used functions in various domains, in-
cluding image processing. These functions
are highly optimized for performance
using Intel® Single Instruction Multiple
Data instruction sets.

Tuning Performance

GM is an open-source image processing
system that includes a robust, efficient
collection of tools and libraries to sup-
port reading, writing, and manipulating
of images in more than 88 major formats.
As the fundamental part of JD.com'’s
image processing application, GM
processes a large number of images on
the fly every hour. Working with Intel,
JD.com put great effort into optimizing
GM and relevant image processing libraries
with Intel® Software Development Tools.

The JD.com engineers wanted to iden-
tify both performance bottlenecks and
potential areas of optimization for their

https://software.intel.com/en-us/intel-sdp-home/

Optimizing Impage Processing

Table 1. Code comparison of the Scalelmage and Scalelmage_ipp functions

Original Version

MagickExport Image *Scalelmage{const Image *image,const
unsigned long columns,
const unsigned|ong rows, Exce ptioninfo *exce ption)

for [y=0; y < [long) scale_image-=rows; y++)

g=SetimagePixels[scale_image,0,y.scale_image->columns,1);
if [q== [PixelPacket #) NULL)
break;
if [scale_image-»rows == image-=rows)
i
1%
Read a new scanline.
5
p=Acquirelmage Fixels(image,0,i++image-
>columns, 1.exception):
if [p == [const PixelPacket *) NULL)
break;
for [x=0; x = (long) image->columns; x++)
i
»_wector[x].red=p->red;
x_wector[x].green=p->green;
x_vector[x].blue=p->blue;
®_wector[x].opacity=p--opacity;
pH;
}
H

}...

.r;turn{scale_immeh
i

Optimized Version Using Intel IPP
MagickExport Image *Scalelmage_ipplconst Image ¥image,const
unsigned long columns,

const unsigned long rows, Exce ptieninfo *exce ption)

i

J*use ipp to resize®

J*only works with RGBimage ®/

IppStatus st;

int channel = 4;

blobSrc = ippsMalloc_Sulchannel *image-=columns) ¥ image-
>rowsj;

dstBuf = ippsMalloc_Bu{channe® columns * rows);

Dispatchimage(image, 0, 0,image->columns, image->rows,
"RGBA", CharPixel, blobSrc, &srcExpl;

int interpolation =1PPI_INTER_MN;

/*Interpolation®/

st= '|pp'|R.asizeGetBu15ize{sr: Roi, dstRoi, channel,interpol ation ,
EbufSize);

pBuffer = ippsMalloc_Su(bufSize);

st= ippiResizeSqrPixel_Su_CAR{blobSrc, srcSize,
srcWidthSte p, srchoi, dstBuf, dstWidthStep, dstRoi, x_factor,
y_factor, 0.0, 0.0,interpolation, pBuffer);

scale_image = Constitutelmage(dstSize.width,
dstSize.height, "RGBA", CharPixel, dstBuf, BdstExp):

return scale_image;

1

Table 2. JD.com benchmark results

GCC* Intel®* C++
Compiler

Time (seconds) 2,800

CPU consumption 100 percent

Response time (ms) 2,943
100

Intel C++
Compiler and
Intel® IPP
226.867 161.589
94 percent 85 percent
378.112 269.315
1,322 1,856

mGCC

1 - -
0.9 - —

oe - i -

0.7 —

0.6 - | —

0.5 - ! | miCcC

0.4 . '_ ICC+IPP
0.3 : S

0.2 —

0.1 3 : —

D T z T 2 T

Time CPU consumption
(Lower is Better) (Loweris Better)

Response time aps
(LowerisBetter) {Higher is Better)

Configuration: Hardware: |nspyy MF5270M3 with Intel® Xeon® ESE20 (@ 2.4GHe, 2 sockets, 64 GB RAM, Hyperthreading is on. Software:
Inted® C++ compiler 14.0.2, Intel® Integrated Perdfomance Prmitives 8.1, GCC 4.4.7. Linux 05: Cent0S release §.5 (Final)

Perfomance tests and ratings are measured using specific computer systems and/orcomponents and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or configumation may

affect actual performance. Buyers should consult other sources of inf

tion to luate the perf ce of systh or components they

ame considering purchasing. For more information on pedfomance tests and on the performance of Intel products, refer to
wwweintel.comperfomance/resources/benchmark_limitations.htm. * Other bands and names are the property of their respective owners

Optimization notice: Intefs compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
notunigue to Intel microprocessors. These optimizations include S5E2, S5E3, and S55E3 instruction sets and other optimizations. Intel
does not guarantee the availabilty, functionalty, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this productare intended for use with Intel microprocessors. Certain optimizations not specific
1o Intel microarchitecture g reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice. Motice revision #201 10804

Figure 2. Performance gains from Intel C++ Compiler and Intel IPP

image processing application running
on Intel Xeon processor E5-2620-based
systems. Since image resizing is one of
the most popular and time-consuming
operations in the application, they used
a benchmark to measure application
performance on Intel Xeon processors.
The benchmark applies to situations in
which 300,000 image files are resized in
500 concurrent instances. The metrics
recorded include the time the applica-
tion took to complete the resizing, CPU
consumption, the number of image files
resized per second, and average re-
sponse time.

The JD.com engineers recompiled GM and
some image processing libraries—includ-
ing libturbojpeg*, libpng*, and libwebp*—
with GCC and the Intel C++ Compiler. They
then benchmarked the application on
Intel Xeon processor-based systems. The
user times showed that the libraries gen-
erated using Intel C++ Compiler performed
12x faster than the GCC-generated libraries.
The Intel C++ Compiler-generated li-
braries were observed to reduce CPU con-
sumption from 100 percent to 94 percent.
In addition, average response time was re-
duced 62 percent. Response time
dropped from 2,943 ms to 378 ms.
Queries per second (QPS) increased from
100 to 1,322.

JD.com engineers identified that image re-
sizing is a hotspot in GM and implemented
a new function, Scalelmage_ipp, which is
an IPP-optimized version of the Scalelm-
age function in GM, which changes the
size of an image to specified dimensions.
Its functionality is essentially the same as
Scalelmage. A few IPP function calls were
added to replace original code snippets.
Since more than 95 percent of the images
processed by GM in JD.com are BMPs,
JPEGs, or PNGs, the current implementa-
tion of the Scalelmage_ipp function sup-
ports only these three formats. A
conditional jump at caller sites was added
to the Scalelmage function that deter-
mines the format of images to be resized.
The Scalelmage_ipp function is executed
for BMP, JPEG, and PNG images, while the
Scalelmage function is executed for all
other formats. Table 1 shows a code snip-
pet in the Scalelmage and Scalelmage_ipp
functions side-by-side.

The Scalelmage_ipp function led to a
considerable performance improve-
ment, according to JD.com’s benchmark
results (Table 2). CPU consumption

IPP library was added, the application
achieved a speedup of 17x compared to
the original GCC-generated code.

With accelerated performance, JD.com

Learn More

Try Intel® C++ Compiler and Intel®
Integrated Performance Primitives,

dropped to 85 percent; QPS increased
to 1,856. This means that JD.com can
process more requests using the same
number of servers. In addition, JD.com
customers see images resized on Web
browsers much more quickly.

available as part of Intel® Parallel
Studio XE >

can process more images faster and at a
lower latency. JD.com achieved signifi-
cant cost savings through efficient system
utilization and speeding up resource-in-
tensive code.

Explore Intel's free tools and libraries >

In August 2015, Intel announced com-
munity licensing for Intel® Performance
Libraries, including Intel IPP. Community
licensing allows individuals, companies,
and organizations to use these powerful
and award-winning performance libraries
to create better, more reliable, and faster
software applications at no cost.

Summary

JD.com got extraordinary performance
for its image processing application with
Intel C++ Compiler. The compiler im-
proved the performance of JD.com
image resizing code 12x on Intel Xeon
processor-based servers. And, after Intel

intel,

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.
Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer, or learn more at www.intel.com.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/perfor-
mance.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites
or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

This document and the information given are for the convenience of Intel's customer base and are provided “AS IS” WITH NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY IM-
PLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. Receipt or possession of this document does not
grant any license to any of the intellectual property described, displayed, or contained herein. Intel® products are not intended for use in medical, lifesaving, life-sustaining, critical control, or safety sys-
tems, or in nuclear facility applications.

Copyright © 2015 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. Printed in USA 1015/SS % Please Recycle

http:// http//makebettercode.com/parallelstudioxe-eval/?utm_campaign=CMD&utm_source=PUM23&utm_medium=Article&utm_content=JDarticle
http://software.intel.com/free_tools_and_libraries

